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Abstract. Investigation of functional brain connectivity patterns us-
ing functional MRI has received significant interest in the neuroimag-
ing domain. Brain functional connectivity alterations have widely been
exploited for diagnosis and prediction of various brain disorders. Over
the last several years, the research community has made tremendous
advancements in constructing brain functional connectivity from time-
series functional MRI signals using computational methods. However,
even modern machine learning techniques rely on conventional correla-
tion and distance measures as a basic step towards the calculation of the
functional connectivity. Such measures might not be able to capture the
latent characteristics of raw time-series signals. To overcome this short-
coming, we propose a novel convolutional neural network based model,
FCNet, that extracts functional connectivity directly from raw fMRI
time-series signals. The FCNet consists of a convolutional neural network
that extracts features from time-series signals and a fully connected net-
work that computes the similarity between the extracted features in a
Siamese architecture. The functional connectivity computed using FCNet
is combined with phenotypic information and used to classify individu-
als as healthy controls or neurological disorder subjects. Experimental
results on the publicly available ADHD-200 dataset demonstrate that
this innovative framework can improve classification accuracy, which in-
dicates that the features learnt from FCNet have superior discriminative
power.
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1 Introduction

In recent literature, functional magnetic resonance imaging (fMRI) has become a
popular neuroimaging modality to explore the functional connectivity (FC) pat-
terns of the brain. Specifically, the resting state FC has shown to reflect a robust
functional organization of the brain. Many studies [1–3] have shown promising
outcomes in the understanding of brain disorders like schizophrenia, attention
deficit hyperactivity disorder (ADHD) and Alzheimer’s disease by studying brain
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functional networks in resting state fMRI. The human brain can be viewed as
a large and complicated network in which the regions are represented as nodes
and their connectivity as edges of the network. FC is viewed as a pair-wise
connectivity measurement which describes the strength of temporal coherence
(co-activity) between the brain regions. A number of recent studies have shown
FC as an important biomarker for the identification of different brain disorders
like ADHD [1], schizophrenia [3] and many more.

Several methods have been developed for extracting the FC from temporal
resting state fMRI data such as correlation measures [3], clustering [1] and graph
measures [2]. Most of the existing techniques, including modern machine learn-
ing methods like clustering, rely on conventional distance-based measures for
calculating the strength of similarity between brain region signals. These mea-
sures act as hand-crafted features towards determining the FC and, may not be
able to capture the inherent characteristics of the time-series signals.

A convolutional neural network (CNN) provides a powerful deep learning
model which has been shown to outperform existing hand-crafted features based
methods in a number of domains like image classification, image segmentation
and object recognition. The strength of a CNN comes from its representation
learning capabilities, where the most discriminative features are learned during
training. A CNN is composed of multiple modules, where each module learns
the representation from one lower level to a higher, more abstract level. To
our knowledge, CNNs have not been investigated to determine the FC of brain
regions. In this work, our motivation is to construct the FC patterns from fMRI
data by exploiting the representation learning capability of a CNN. Particularly,
we are interested to determine if a CNN can capture the latent characteristics
of the brain signals. Compared with other methods, our approach calculates the
FC directly from pairs of raw time-series fMRI signals, naturally preserving the
inherent characteristics of the time-series signal in the constructed FC.

For training, FCNet requires pairs of fMRI signals and a real value indicating
the degree of FC. Training data is produced using a generator that selects pairs of
time-series signals that are considered functionally connected, and those that are
not. This data is used to train a Siamese network [4] architecture to predict FC
from an input signal pair. We demonstrate the expressive power of the features
extracted from the FCNet in a classification framework that classifies individuals
as healthy control or disorder subjects.

The proposed framework has several stages and is illustrated in Fig 1. The
first stage is to train the proposed FCNet using the data generated by a data
generator (Fig 1a). The FCNet learns to infer the FC between the brain regions.
Once the FCNet is trained, the next step is to use the FCs to distinguish healthy
control and disorder subjects. This is accomplished by the classification pathways
(Fig 1b, c). During training, the fMRI signal from a training subject is fed into
the trained FCNet, which generates a FC map of the brain regions. Then an
Elastic Net (EN) [5] is used to extract the most discriminative features from
the FC. The process combines variable shrinkage and grouped feature selection.
These features are concatenated with phenotypic information to create a final
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Fig. 1. Flowchart of the proposed method. In (a), FCNet is trained from the data
generated by the generator. In the training pipeline (b), functional connectivity (FC)
is generated through FCNet. Next, discriminant features are selected and are con-
catenated with phenotypic data, then employed to train a SVM classifier. The testing
pipeline is shown in (c). After FC is calculated, features are selected and concatenated
with phenotypic data. A trained SVM is employed for classification.

feature map. The feature map is used to train a SVM classifier which learns to
classify between healthy control and disorder subjects. Once the classification
path of Fig 1b is trained, it can be used to classify test subjects as shown in Fig
1c.

The contributions of this work include: 1) a novel CNN-based deep learning
model for extraction of functional connectivity from raw fMRI signals 2) a learn-
able similarity measure for calculation of functional connectivity and 3) improved
classification accuracy over the state-of-the-art on the ADHD-200 dataset.

2 Method

2.1 Data and preprocessing

The resting state fMRI data evaluated in this work is from the ADHD-200 con-
sortium [6]. Different imaging sites contributed to the dataset. The data is com-
prised of resting state functional MRI data as well as phenotypic information.
The consortium has provided a training dataset, and an independent testing
dataset separately for each imaging site. We have used data from three sites:
NeuroImage (NI), New York University Medical Center (NYU) and Peking Uni-
versity (Peking). All sites have a different number of subjects. Additionally,
imaging sites have different scan parameters and equipment, which increases the
complexity and diversity of the dataset. This data has been preprocessed as part
of the connectome project1 and brain is parcellated into 90 regions using the au-
tomated anatomical labelling atlas [7]. A more detailed description of the data
and pre-processing steps appears on the connectome website. We have integrated
phenotypic information of age, gender, verbal IQ, performance IQ and Full4 IQ
for NYU and Peking (for NeuroImage, phenotypic information of IQs was not
available).
1 www.preprocessed-connectomes-project.org/adhd200/
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Fig. 2. Architecture of the FCNet. (a) FCNet with coupled feature extractor network
(one network for each brain region) and the similarity network which measures the
degree of similarity between the two regions. (b) The feature extractor network which
includes multiple layers namely Convolutional (Conv), Batch Normalization (B-Norm),
Pooling (pool), Fully Connected (F.Conn) and Leaky-ReLU (L-ReLU). (c) The simi-
larity measure network. (d) Legends for feature extractor network.

2.2 Functional connectivity through FCNet

In this work, we propose a novel deep CNN for the calculation of FC. Our
proposed method calculates FC directly from raw time-series signals instead of
relying on conventional similarity measures like correlation or distance based
measures.

FCNet is a deep-network architecture for jointly learning a feature extractor
network that captures the features from the individual regional time-series signal
and a learnable similarity network that calculates similarity between the pairs.
The FCNet is presented in Fig 2 and individual networks are detailed below.

The feature extractor network: This network extracts features from indi-
vidual brain region time-series signals and is comprised of multiple layers that
are common in CNN models to learn abstract representations of features. Here,
we use a Leaky Rectified Linear Unit (ReLU) as the non-linearity function, due
to its faster convergence over ReLU [8]. The network accepts time-series signal
of length 172. All pooling layers pool spatially with pool length of 2. For all
convolution layers, we use kernel size of 3 and the number of filters are 32, 64,
96, 64, 64 for layers C1, C2, C3, C4, C5 respectively. The last fully connected
layer in the network has 32 nodes.

The similarity measure network: This network employs a neural network
to learn the FC between pairs of extracted features from two brain regions.
This is in contrast to conventional methods that use hand-crafted computations
like correlation or distance based measures. The input to this network are the
abstracted features extracted from two regions. The network computes their FC,
which relates to the similarity between the two regions. The network is comprised
of three fully connected layers where the last layer is connected to a softmax
classifier with dense connections. Next, we describe architectural considerations
and training.

Coupled architecture with shared parameters: In order to calculate the
FC between different pairs of brain regions, the brain regions must undergo the



FCNet 5

same feature extraction processing. It can be realized by employing the two
feature extractor networks (coupled structure) with the constraint that both
networks share the same set of parameters. During the training phase, updates
are applied to the shared parameters. The approach is similar to Siamese network
[4] that is used to measure similarity between two images.

Data generator for training FCNet: For training FCNet, we require simi-
lar (functionally connected) and dissimilar (not functionally connected) regions
with corresponding labels (one and zero respectively). We develop a generator
to generate pairs of brain regions using support from affinity propagation [9]
clustering for labelling the training pairs. We make pairs for regions that lie in
the same cluster and assign them the label one (functionally connected). For
unconnected pairs (regions that are not functionally connected), we randomly
pick regions that do not belong to the same cluster and label the pair zero. The
procedure is detailed in Algorithm 1.

Algorithm 1: Data generation for training of the FCNet.

Input: X % X is the subjects in training data, nReg (number of regions) = 90.
Output: (Pairs, Labels) % Pairs and Labels are used for training of FCNet.

1 for each x in X do
2 c ← cluster(x) % clustering results in c
3 count ← 0
4 for i ← 1 to nReg do
5 for each j in (1→ nReg) such that c(xi) = c(xj) and i 6= j do
6 AddToPairs((xi,xj), Pairs)
7 AddToLabels(1, Labels)
8 count ← count + 1

9 end
10 for k ← 1 to count do
11 r ← RandomSelectRegion(x) such that c(xi) 6= c(r)
12 AddToPairs((xi,r), Pairs)
13 AddToLabels(0, Labels)

14 end

15 end

16 end
17 return (Pairs,Labels)

Training of FCNet: FCNet is trained on pair-wise signals with labels gener-
ated from the generator as described above. The FCNet is trained end-to-end
using a coupled architecture minimizing the cross-entropy loss

Lfc = − 1

n

n∑
1

[yilog(ŷi) + (1− yi)log(1− ŷi)], (1)

where n is the number of training samples, yi is the label of pairs (1 for func-
tionally connected and 0 for unconnected regions) and ŷi is the prediction by
the softmax layer.
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Table 1. Comparison of FCNet with the average results of competition teams, highest
accuracy achieved for individual site, correlation based FC and state-of-the-art clus-
tering based FC results [1]. The highest accuracy for NI was not quoted by [10].

NI Peking NYU

Average accuracy [6] 56.9% 51.0% 35.1%
Highest accuracy [10] – 58% 56%
Clustering method [1] 44% 65% 61%
Correlation 52.0 % 52.9% 56.1%
Proposed method 64.0% 68.6% 63.4%

To evaluate FC through the FCNet, regions belonging to each subject are
grouped into pairs (for 90 regions belonging to a subject 4005 unique pairs are
created). The pairs are passed to the trained FCNet, which computes FC for
each pair.

2.3 Feature Selection and Classification

The FC of a subject may contain highly correlated features. We investigate Elas-
tic Net (EN) based feature selection [5] for extracting discriminant features. EN
combines the L1 penalty to enable variable selection and continuous shrinkage,
and the L2 penalty to encourage grouped selection of features. If y is the label
vector for subjects yiε(l1, l2, ...ln) and X = {FC1, FC2, ...FCn} represents the
functional connectivity of subjects, we minimize the cost function

Len(λ1, λ2, β) = (||y −Xβ||)2 + λ1(||β||)1 + λ2||β||2, (2)

where λ1 and λ2 are weights of the terms forming the penalty function, and
β coefficients are calculated through model fitting. The features with non zero
β coefficients relating to minimum cross validation error are extracted. Similar
to [1], phenotypic information of the subjects are concatenated with the EN
based selected features to construct a combined feature set for classification.

The final step in the proposed framework is classification where a support
vector machine (SVM) classifier is utilized to evaluate the discriminative ability
of the selected features.

3 Experiments and Results

The proposed framework is evaluated on a dataset provided by the ADHD-
200 consortium, and contains four categories of subjects: controls, ADHD com-
bined, ADHD hyperactive-impulsive and ADHD inattentive. Here we combine
all ADHD subtypes in one category since we want to investigate classification
between healthy control and ADHD.

In many biomedical domains specifically fMRI, scarcity of the data emerges
as a challenging task. To address this issue, we combine all subjects from training
datasets of the different imaging sites and FCNet is trained on this combined
training dataset. Feature selection and classification is evaluated on individual
imaging datasets. The trained SVM classifier is tested with independent test data
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provided for each individual site, and results are presented in Table 1. The results
show that our method outperforms the average accuracy results of competition
teams (data from the competition website), highest accuracy for any individual
site (from [10]) and correlation-based FC results. For correlation based results,
FC is calculated through correlation and the rest of processing pipeline is same
as our method. It is worth noting that the parameters of our framework are
held constant for all the imaging datasets. Our method also performs well in
comparison with a state-of-the-art clustering based FC technique [1]. In order
to compare with the related work [1] that employed phenotypic information,
we compare and present the results in Table 2, which shows that our method
performs well in all of the three imaging sites. Finally, in order to study the FC
differences between the healthy control group and the ADHD group, we visualize
their respective FC patterns using the Peking dataset and present the results in
Fig 3. The results show that in ADHD, the temporal lobe functional connectivity
is reduced compared to healthy controls.
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(a) FC patterns of the healthy control group.
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(b) FC patterns of the ADHD group.

Fig. 3. Comparison of mean functional connectivity (FC) of healthy control group (a)
and ADHD group (b) for the Peking dataset. For the sake of clarity, only the top 200
connections (based upon their connectivity strength) from both groups are presented.
The FC patterns show alterations. The temporal lobe FC patterns are altered the most
with a decrease of 15% FC patterns in the ADHD group. The inter-temporal lobe FC
patterns are reduced from 22.7% (healthy group) to 7.7% (ADHD group).

4 Conclusion

In this paper, we have proposed a novel convolutional neural network-based
deep learning model called FCNet for functional connectivity estimation from
fMRI data. The proposed model extracts functional connectivity from raw time-
series signals instead of relying on any conventional distance based measure.
The FCNet is comprised of a feature extractor network that extracts features
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Table 2. Comparison of proposed method with the state-of-the-art results [1]. The
results suggest that the FCNet outperforms the state-of-the-art classification accuracy.

Phenotypic
information

Method NI Peking NYU

Not used
Clustering method [1] 44% 58.8% 24.3%
Proposed method 60.0% 62.7% 58.5%

Used
Clustering method [1] – 65% 61%
Proposed method 64.0% 68.6% 63.4%

from the raw time-series signals and a learnable similarity measure network that
calculates the similarity between regions. The FCNet is an end-to-end trainable
network. After calculating functional connectivity, elastic net is applied to se-
lect discriminant features. Finally, a support vector machine classifier is applied
to evaluate the classification results. Experimental results on the ADHD-200
dataset demonstrate promising performance with our method.
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