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Risk assessment (RA) behaviour is unusual in the context of

survival circuits. An external object elicits eating, mating or

fleeing; but conflict between internal approach and withdrawal

tendencies elicits RA-specific behaviour that scans the

environment for new information to bring closure. Recently

rodent and human threat responses have been compared

using ‘predators’ that can be real (e.g. a tarantula), robot,

virtual, or symbolic (with the last three rendered predatory by

the use of shock). ‘Quick and dirty’ survival circuits in the

periaqueductal grey, hypothalamus, and amygdala control

external RA behaviour. These subcortical circuits activate, and

are partially inhibited by, higher-order internal RA processes

(anxiety, memory scanning, evaluation and sometimes —

maladaptive rumination) in the ventral hippocampus and medial

prefrontal cortex.
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Introduction
Our main text reviews reports (2015–2017) relating to

‘risk assessment’ (RA) in the context of ‘survival circuits’.

First, we provide some background context.

Survival circuits ‘instantiate functions that allow organ-

isms to survive and thrive by detecting and responding to

challenges and opportunities . . . [e.g.] defense, main-

tenance of energy and nutritional supplies . . . [they]

and their adaptive functions are conserved to a significant
degree across mammalian species, including humans’ [1, p.

654, our emphasis]. They operate primarily at lower levels

of neural processing, are not the substrate of conscious

experience, and only partially overlap the control of

‘emotion’ [2]. Such ‘quick and dirty’ [3] circuits produce

characteristic RA-specific behaviours [4,5]. In rats, these
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include crouch-sniff and stretch-attend when threat is

near; and rearing when threat is not so immediate. All RA

behaviour functions to gain information from the

environment.

With less proximal threat, RA processes shift from the

gathering of new external information to (most obviously

in humans) slow and sophisticated [3] re-processing of

information internally: planning and scanning of memory

[6�]. It may also involve rumination/worry — but with

high levels of rumination ‘appearing to represent a type of

non-functional RA’ [7��, Section 2.2]. Indeed, worry may

not reflect RA at all, since it does not add information

from the world or from memory; and does not function to

resolve the response conflicts generated by threat.

Internalised RA is embedded in complex

‘neuroeconomic’ processes (see [8]): ‘We routinely have

to evaluate the relative risks and rewards associated with

different options, choosing between potentially more

profitable, but uncertain outcomes, and safer, yet more

modest, rewards, such as when managing an investment

portfolio’; with rats and humans both using prefrontal–

amygdala–accumbens circuits in a dynamic competition

between top-down and bottom-up processing [9, p. 2886].

Risk aversion can bias decisions, as can risk seeking, with

bias sometimes reflecting evaluation failures within fron-

tal circuits [10]; and risk modulates rhythmic activity in

both frontal and posterior cortex [11]. Risk in the eco-

nomic literature is tightly defined as the result of chance

outcomes where the probabilities are known. Ambiguity

is treated as distinct and arises when probabilities are not

known. RA is likely to arise primarily when there is

ambiguity ([6�]; see Blanchard, this issue) or when beha-

vioural strategies are being adapted in response to known

probabilities. It would not be expected to occur once

behaviour has stabilised — that is, it has become habitual.

As detailed below, the frontal areas involved in internal

RA processes have bi-directional, co-ordinating, links

with subcortical RA survival circuits, which are often

driven by immediate input from the environment.

‘Survival circuits are sensory-motor integrative devices

that serve specific adaptive purposes, . . . and they . . .

control behavioural responses and internal physiological

adjustment that help bring closure to the situation’ [1, p. 655,

our emphasis]. Tissue need can produce appetite and a

search for an appetitive object. But, we are more often

driven by incentive motivation — the object generates

our desire [12]. With aversion, control by the object is

more obvious. Proximity to, or contact with, such moti-

vating objects (predator, food, mate) elicits object-specific
www.sciencedirect.com
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behaviours. At greater distance, behaviour elicited by an

object will not be object-specific (such as attack, eating or

lordosis) but rather will result from activation of subcorti-

cal survival circuits that control general approach to any

positive goal and withdrawal from any negative goal,

respectively [13�]. Such goal approach or goal withdrawal

is an extension of object-specific behaviour: lever press-

ing by a female rat to obtain a potent male [14] is an

immediate precursor to lordosis and both are necessary for

her achievement of the crucial (gene) survival behaviour

of copulation. Indeed, except with an unrestrained male

rat, the female rat will always have to undertake general

approach to obtain any of a wide range of desired

objects — and so too with the human female.

RA behaviour arises in an unusual survival circuit. Risk is

not an object like a predator or food. RA arises when the

goal approach and goal withdrawal systems are in a

conflict3 — detected by a third system (BIS, Figure 1).

Despite being neurally above the approach and with-

drawal systems (which are above object-specific circuits),

the BIS produces RA-specific behaviours. RA behaviour

gathers, or makes salient, new positive or negative infor-

mation and so brings closure from conflict. Closure will

involve approach if safety is established; or, more usually,

withdrawal (negative bias increases risk aversion, Fig-

ure 1). This elicitation of RA-specific behaviours requires

not only goal conflict, but also an intermediate ‘defensive

distance’ [16–18] or immediacy of threat. When threat is

close, defensive quiescence appears; when threat is far,

RA is part of internal planning. We have previously

mapped the hierarchy of passive defensive behaviour

to a hierarchy of neural structures [13�,19,20], locating

the primary control of RA-specific behaviours in the

ventrolateral periaqueductal grey and medial hypothala-

mus (Figure 2), close to other survival circuits [21].

In this context, it is important to realise that the PAG,

while controlling simple forms of behaviour, does so in a

goal directed (not taxon or stimulus-response [13�]) fash-

ion. Thus simple RA behaviour could be elicited by

moderate co-activation of PAG areas controlling conflict-

ing goals. As with direct prefrontal influences on panic,

simple RA behaviours could be elicited where neocorti-

cally-detected uncertainty simply requires additional

external information for its resolution. Conversely, con-

flicting simple PAG activations could elicit higher order,

neocortical, RA processes.
3 Approach can be produced by gain or the omission of loss; with-

drawal can be produced by loss or the omission of gain. A choice to

approach one of two alternatives automatically means omission of the

consequences of the other. So approach/approach and avoidance/avoid-

ance choice can elicit conflict, and RA, in the same way as approach/

avoidance. Note that, in these situations, the words ‘reward’ and

‘punishment’ can be ambiguous [52].
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An important feature of the goal-conflict detection system

in general (and of RA in particular) is sensitivity to

benzodiazepines and other anxiolytic drugs (which affect

neither approach nor withdrawal/fight/flight). This sensi-

tivity gives us reason to see RA as functionally funda-

mental — the benzodiazepine receptor is phylogeneti-

cally old, appearing in bony fish [22], with a largely

conserved functional role [23, p. 464]. Although our

modern minds inhabit an ‘age of anxiety’ that particularly

engages our prefrontal cortex [24�], control of this anxiety

is strongly linked to benzodiazepine receptors [25] impli-

cating ancient survival circuits in key processes like RA

(see also [7��]).

Main text of review
Measuring risk assessment

As we have noted, RA is a response to a lack of information
rather than to the presence of some explicit survival-

related object. This makes its study difficult on two

counts.

First, we cannot easily present a specific, explicit, elicit-

ing stimulus; so most researchers measure RA inciden-

tally or indirectly. RA is, therefore, best studied with

neuroethology [26�]. Reliable elicitation of RA with a

predator [27] has recently been extended to more con-

trollable artificial predators (see [26�]) and to more formal

shock conditioning in rats [28�] and humans [29��].

Second, unlike approach and withdrawal, the specific

type (coded by a trained observer) and intensity of RA

behaviour varies non-linearly with, for example, threat

level. Network analysis of behaviour (e.g., [30]) may help

solve some of these problems. Recent translation of

rodent RA paradigms to human scenarios, and video

games, suggests that systematic manipulation of the

ambiguity/uncertainty of threat is something to which

‘RA is exquisitely sensitive’ [6�] — emphasising that RA

is a response to a lack of explicit stimulus information

rather than a response to an explicit stimulus; but escap-

ability may also be important [28�]. Ecologically valid

testing of variations in defensive distance, threat, and

uncertainty in humans could also, therefore, involve quite

simple stimulus presentation (e.g., [31�]) but will need

great care assessing ambiguity/uncertainty in its analysis.

Subcortical risk assessment survival circuits

The periaqueductal grey (PAG) appears to be the lowest

level of integrated control of motivated responses (Fig-

ure 2). The PAG has strong but complex clinical links

with panic disorder; and is subject to top-down influences

from prefrontal cortex (PFC), both directly, and via

amygdala/hippocampus [32�,33��]. This is consistent with

its association with very short defensive distance freezing/

flight (Figure 2) and control by the amygdala in the rat

[34�]. PAG appears to control only the more proximal RA

behaviours such as stretch-attend [35]. RA behaviour
Current Opinion in Behavioral Sciences 2018, 24:14–20
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Figure 1
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Overall relation of goal approach (BAS), goal withdrawal (FFFS, fight, freeze, flee) and goal conflict (BIS, behavioural inhibition) systems. Inputs are

classified as delivery (+) or omission (�) of primary positive reinforcers (PosR) or primary negative reinforcers (NegR) or conditional stimuli (CS) or

innate stimuli (IS; e.g. sight of a predator) that predict primary reinforcers. The BIS detects approach-withdrawal conflict and, when these are of

similar strength, releases RA behaviours, including exploration, while inhibiting pre-potent approach and withdrawal.

Source: From Ref. [15].
elicited by avoidable contextual shock conditioning is

associated with increased c-fos in the dorsomedial and

lateral PAG [28�] — possibly due to concurrent activation

of approach and avoidance (Figure 2). In contrast, RA

elicited by cat odour (or its context) is blocked by

NMDA-receptor antagonist injections in the dorsolateral

PAG ([36]; consistent with Figure 2). The serotonin

system (its dorsal raphe component is embedded in the

PAG) may be particularly important for the control of RA

[7��].

Activation of the dorsomedial and lateral PAG during RA

is accompanied by activation of the lateral hypothalamus

and dorsal premammillary nucleus but not the hippocam-

pal and septal areas that provide a major top-down input

to the lateral hypothalamus [28�]. In addition to the lateral

hypothalamus [37], the posterior hypothalamus may be

involved in RA (in the form of novel object exploration)

and may concurrently control the anxiety-related neuro-

endocrine stress response [38]. Consistent with the top-

down control of the PAG by the amygdala in relation to

freezing and flight, the basolateral amygdala appears to be

involved in the generation of RA as measured by stretch-
Current Opinion in Behavioral Sciences 2018, 24:14–20 
attend in the elevated plus-maze [39] and by the firing of

one group of its cells during periods of hesitation or

retreat, but not of escape [40�].

Subcortex–cortex interactions

We can expect (Figure 2) bidirectional connections

between any quick and dirty survival circuit and its slow

and sophisticated cortical companion. Each should be

able to activate the other and, when an appropriate

sophisticated response is available, cortex should be able

to inhibit the simplistic output from subcortex.

Interestingly, the key output from the amygdala in its

control of PAG-based RA behaviour is ascending: to

medial PFC either directly [41] or relayed [42] via the

ventral hippocampus [43,44]. This transfer, like many

other processes [45�], depends on theta-frequency syn-

chrony [42]. However, this theta-rhythmicity may be

more related to the approach or withdrawal that follows

RA than it is to RA itself [46]. Conversely, a distinct

population of ventral hippocampal cells that targets the

lateral septum rather than the medial PFC inhibits anxi-

ety-related behaviour, perhaps as a form of negative
www.sciencedirect.com
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Figure 2

Hierarchical organisation of approach, withdrawal and behavioural inhibition (BIS) in terms of behaviour and neural level. Lower levels process

small defensive distances; higher levels process greater ones (i.e., negative events that are more distant in space or time). Activation tends to

spread through the whole system (double-headed black arrows) but strong activation of a higher level (e.g., avoidance) inhibits (single-headed

arrows) the behavioural output from (but not the activation of) lower levels (e.g., escape). *Static postures that achieve withdrawal, conflict

resolution, or approach, respectively. Abbreviations: PAG, periaqueductal grey; OFC, orbital frontal cortex.

Source: Adapted from Ref. [13�].
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The ascending control of risk assessment.

Source: Adapted from Ref. [50�].
feedback [44]. By contrast to the positive role of the

basolateral, the basomedial amygdala appears to mediate

suppression by the ventromedial PFC of a wide range of

fear-related and anxiety-related responses [47��].

Recent imaging work with humans, using virtual preda-

tors, has distinguished between ‘reactive fear’ circuits

(involving PAG and mid-cingulate cortex) controlling

escape at short defensive distances and ‘cognitive fear’/
www.sciencedirect.com 
anxiety circuits (involving hippocampus, posterior cingu-

late cortex, and ventromedial PFC) that control escape/

strategic avoidance at long defensive distances [29��,48].
Given the use of long defensive distance, such strategic

calculations likely reflect RA in the cognitive/neuroeco-

nomic sense we mentioned earlier: clearly involving

memory and operating well above the level of simple

RA behaviour controlled by highly conserved subcortical

survival circuits. In particular, human cortical circuits
Current Opinion in Behavioral Sciences 2018, 24:14–20
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Figure 4
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Topographically organised descending control of goal-directed behaviour.

Source: from [51].
appear to go well beyond the capacities of the survival

circuits we share with other animals in their capacity for

imagination/simulation of future threat, environmental/

social reduction of threat, vicarious learning, and the use

of reason to anticipate new threats — constituting a Sur-

vival Optimisation System [49��].

Models of risk assessment circuits

We now have a detailed picture of the ascending control

of RA (Figure 3; [50�]). In this model, activation of PAG

can engage the highest levels of internal processing and

planning. However, quite simple RA behaviours that

acquire more information from the environment may

resolve even the most complex goal conflict. RA, as a

whole, then is likely to involve interactions between

ascending and descending circuits [47��]. The precise

descending control of RA remains to be determined,

but is likely to involve the same structures as does

ascending control (compare Figures 3 and 4).

Conclusions
Despite its key role in survival, there has been little direct

study of ancient conserved RA survival circuits. The hope

is that here, as more generally, the move towards ‘semi-

realistic studies will allow . . . a paradigm shift in exper-

imental design, moving beyond the oversimplified meth-

ods uses in classical and instrumental conditioning, yet .

. . [with] tight control over conditions . . . [and provid-

ing] a new window into the neural circuits that underlie

fear and anxiety’ [26�].
Current Opinion in Behavioral Sciences 2018, 24:14–20 
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