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Fundamental neurobiological processes are usually

evolutionarily conserved and most easily studied in animals.

There is a move to seeing psychopathology as an extreme

position in a multidimensional trait spectrum, and even

zebrafish provide useful models of psychopathology. Animal

breeding, pharmacology, and neural models of states provide a

basis for understanding traits in all animals, including humans

— particularly if we view traits as relatively unchanging

sensitivities of neural systems that generate myriad momentary

states, matching density state-trait distributions in human

personality psychology. We see a major development in

‘What’s next?’ as the recent combination of virtual world

models with fMRI and scalp EEG brain recordings in humans.

Once fully translated, such human work can raise questions

that require further animal work. The future needs both more

animal work and more, synergistic, translational human work if

we are to uncover the neurobiology of personality and its role in

psychopathology.
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Introduction
Our main goal in discussing ‘What’s Next?’ for a non-

human (and particularly rodent) perspective on personal-

ity is to convince the scientific community that there is a

need for one. Given acceptance of this perspective, in

principle, its importance for neurobiology (both mecha-

nistic and, by definition, phylogenetic) and psychopathol-

ogy follows. Currently non-human work on personality
www.sciencedirect.com 
structure, often in primates, tends to borrow from, more

than inform, systems such as the Big Five [1–3]. Con-

versely, trait-linked psychopathology-oriented work,

often in rats, occurs in silos that have little impact on

general personality research and little connection with

each other [but see Refs. 4,5 for recent primate excep-

tions]. We believe this separation is a grave failing.

People are often reluctant to see their mirror in other

animals. They share the supposed Victorian response to a

lecture on Darwin, ‘Descended from the apes! My dear,

we will hope it is not true. But if it is, let us pray that it

may not become generally known.’3 We will not repeat

here our arguments for phylogenetic continuity of the

biology of cognition and emotion [6]. Our key conclusion

was that analysing non-human behaviour is preferable to

human behaviour and, particularly, to human verbal

behaviour. We, thus, agree with Darwin that non-human

behaviour is ‘less likely to deceive us’ [7]. That said, care

must always be taken when attempting translation

between species; especially from some single highly

standardized model [8] in a healthy mouse to a clinical

trial in disordered humans [9].

Many would accept that non-human neurobiology is

useful for understanding cognitive and emotional pro-

cesses. But even they may not accept non-linguistic

animals as useful for understanding traits reflected in

scales derived from essentially lexical analysis. Two

points should be noted here.

First, use of a questionnaire scale does not entail that

what is measured is merely lexical. Veridical verbal report

can be an immediate, cheap, and easy record of long-term

consistencies in patterns of behaviour (and so of the

processes that gave rise to the patterns and their consis-

tency). Observer reports of behaviour in non-humans

show that ‘The latent trait model of personality that

was developed by differential psychologists is a good

model for describing primate personality’ [10, p. 4]. Thus,

primate and other ‘animal personality research does not

break from trait theories of personality. Instead, it

enriches trait theories by conceiving of traits as not

belonging to a species, but as expressed, with some
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4 This approach can make assessments of interactions easy to visual-

ise, although the analyses can also be executed (and often with higher

power) using continuous variables augmented by presenting ‘simple

slopes’ visualisations of the interactions.
modifications, across species’ [1, p. 12]. Consistent pat-
terns define the trait of interest (which may underlie

scores on a range of different scales), which will arise

from ‘causal processes in the functioning of personality

and treatment of psychopathology’ [11, Figure 3, p 132].

Second, the consistency of personality, [i.e. patterns of

Affect, Behaviour, Cognition, and Desire: ABCD; 12],

will often vary among individuals depending on the

settings of simply modulatory systems that are phyloge-

netically old, highly conserved, and fundamental to psy-

chopathology [13��]. Analysis of simpler animals should

make the causal [13��] and adaptive [2,14] nature of traits

clearer; with the human case often reflecting superficial

phylogenetically late rostral additions to a common fun-

damental caudal control system. That is, phylogeny gen-

erally adds more selective sensory filters and more exten-

sive goal-subgoal scaffolding to trait systems with

structures that have highly conserved adaptive functions.

We provide below brief examples of ways animal work

can impact on our understanding of personality traits in

general, their neurobiology, and the links of both to

psychopathology. We assume (see also Figure 2) a hier-

archy of traits and a partially matching trait-like hierarchy

for psychopathology [11,15,16,17��] where assessment of

disorder can often be viewed as assessing traits [18].

We believe non-human work across a range of species can

provide a clear picture of: (1) the neural organisation of

state systems that express both trait characters and

psychopathological symptoms; (2) the pharmacological

nature of conserved neuromodulatory and hormonal sys-

tems that exert trait-like control of behaviour; and, (3) of

the evolution of traits as exemplified by breeding and

genetic modification and as assessed by comparative

observation [2,14].

Finally, since all species differ in how they express

conserved systems, we look at novel translational work,

focussed on human defensive traits, that uses virtual

predators and imaging to test models based on non-

human neuropsychology. Such comparative work deter-

mines phylogenetic homologies, and so indicates func-

tions, while nonetheless directly testing their applicabil-

ity to the human species normally tested by personality

psychologists. In this regard, non-human work allows a

complete personality neuroscience to rival any of the

other applications of neuroscience within psychology.

Our overview focuses on traits linked to defensive behav-

iour. There is a substantial body of work on defensive

systems, their phylogeny, effects of breeding, and human

homology. Defence provides clear parallels between non-

humans and humans; and between normal variation and

psychopathology at its extremes. The intersection of

personality and psychopathology (particularly with fear
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and anxiety) may seem to limit us to only more primitive

aspects of states and traits, and exclude more ‘human’

ones. But our approach can be extended to all aspects of

human states and traits, if we make similar allowances for

variation in surface elaboration as we must among other

species.

There is a range of other less-developed areas where the

same approach can be taken in principle. For example [for

review see Ref. 19�], maternal immune activation not only

results in autism and schizophrenia in humans but (par-

ticularly in interaction with genetic risk factors) can be

used to generate animal models of these disorders and so,

potentially, of human traits such as schizotypy [20]. As

with trait measures in humans, challenge tests can be

used to separate animals into high and low scoring groups4

; showing, for example, that with stress-resilient versus

stress-susceptible females and males susceptibility and

gender interact in determining both baseline and stress-

related brain rhythm changes across different structures

[21]. Likewise, fish can provide useful models not only of

anxiety and fear but also of autism spectrum, attention

deficit, and serotonin-related stress disorders [22,23�,24].

Main text of review
Understanding State control

Traits are consistencies in patterns of ABCD through time.

Events, memories, and imagination elicit moment-to-

moment state changes. The resultant ABCD will vary

depending both on the current input to the relevant

neural systems and the long-term sensitivities of the

systems to that input. Understanding state control will,

therefore, be important whether we view traits as density

distributions of states [27,28] or more mechanistically as

long-term settings of modulatory control systems that

account for state distributions [13��]. So, the neurobiology

of traits rests on a foundation of the neural control of states

— about which non-human work provides considerable

information. This is particularly clear for the conserved

‘survival circuits’ [29] that provide the basis for the most

basic motivation-related traits, which are particularly

important for psychopathology.

The Reinforcement Sensitivity Theory (RST) of Person-

ality [see Ref. 30], in particular, has an explicit origin in

the integration of a mass of non-human with human data

[31]. Recent developments of the neuropsychology of

RST [25,32] include a detailed symmetrical neurology

(Figure 1). Importantly, this picture of normal beha-

vioural control and so normal trait variation, even with

the most phylogenetically old elements, also accounts for

key details of psychopathology [33].
www.sciencedirect.com
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Figure 1
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Repulsion, inhibition, and attraction systems in the brain [from Ref. 13��, based on Ref. 25]. Hierarchical organisation results in moment-to-moment

state changes that depend on ‘motivational distance’ (resulting from the interaction of specific outcome value with general trait sensitivity. Panic

proneness as a facet could depend on the sensitivity of the PAG to its specific inputs, trait anxiety could depend on endogenous benzodiazepine

control of the inhibition system, and metatrait stability could depend on control of all three systems by serotonin [26] with other monoamines or

hormones providing sources of additional traits. Abbreviations: OFC = orbital frontal cortex; PAG = periaqueductal grey.
Understanding trait control

Traits, having high or low values across individuals,

simplify ABCD variation within a population. They

involve systems where both high and low reactivity will

have adaptive benefits and costs and so there will be

‘balancing selection (where selection itself maintains

genetic variation)’ [34, p. 554].

But how is this variation controlled? Selection of animals

for particular behavioural characters shows how personal-

ity traits can evolve; and also provides an interesting guide

as to the way superficially unrelated characters may be

combined during such selection.

While laboratory rats may not be good models for

the entire range of human behavior, the hormonal

basis of emotional behavior has many homologies

[and use of] experimental subjects with contrasting

differences in endocrine function and behavior is a

powerful experimental tool. [35, p. 370].
www.sciencedirect.com 
Let us look at some examples. The classic silver fox

experiment, selecting only for a single tameness (proso-

cial-toward-humans) score, found decreased stress hor-

mones and increased serotonin; but it also obtained dog-

like features such as floppy ears, curly tails, and juvenile

body forms [for review, see Ref. 36] — and even a

decrease in tooth size [37]. Likewise, the Maudsley

Reactive/Non-Reactive rat strains were obtained by

selection on a single simple character (defecation in

response to open field stress) but differ on such a wide

range of related responses that they have been taken as a

model of emotionality or neuroticism. Unlike the foxes,

they differ in their prolactin, but not pituitary-adrenal (e.

g. corticosterone), responses to stressors and so are not a

complete model of general stress reactivity [35]. A third

pattern is seen in ‘rats bred for low [locomotor] response

to novelty [who] exhibit high levels of inhibition, anxiety-

related behaviors, passive stress coping, and anhedonia

compared to high novelty responding rats that vigorously
Current Opinion in Behavioral Sciences 2022, 43:255–262
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Figure 2
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Comparison (based on Refs. [64,65]) of RDoC and HiTOP with addition of a tentative comparison of HiTOP with the Big 5. Note that HiTOP ‘fear’

has been renamed ‘threat’ and fear and anxiety included as separate syndromes (matching both RDoC and Figure 1). Red arrows represent

positive correlations, blue represent negative ones. The mappings of even simple elements are not one-to-one and the systems’ structures are

different: RDoC has no official hierarchical structure; HiTOP has a single highest order factor (termed a superspectrum and constituting the

general factor of psychopathology or p-factor) with 3 embedded superspectra, each reflecting covariance of a pair of spectra; Big 5 has only two

separate highest order factors (metatraits). The same conserved neural systems must control the individual trait patterns of affects, behaviors,

cognitions and desires [12] that are meant to be encapsulated by each of these classifications. It should follow that both with animal personality

and human classifications their common underlying neuroscience should ultimately provide a foundation for translation between them.
explore novel environments, exhibit greater impulsivity,

aggression, and risk-taking’ [38, p. 2]. The high respond-

ers have higher stress-induced corticosterone but reduced
hippocampal glucocorticoid receptor expression and a

higher tendency to self-administer corticosterone. Inter-

estingly, they also show reduced epigenetic effects of

stressful manipulations on their offspring.

The common story, here, is that some very simple,

situation-specific, character may be used as the basis

for selection but the strains then separate on deeper

underlying (often hormonal) control factors. Hormonal

(corticosterone), neurohormonal (benzodiazepine), and

neuromodulatory (serotonin) factors have widespread

action across the brain and so changes in their response

affects systems as a whole (as well as physical morphology

in the fox case), not just individual behaviours. Critically

for translation to humans, these hormones and their

fundamental effects will be highly conserved even if

detailed superficial expression varies across species

[13��,24,35].
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The potential for linkage of this approach with state

theory is shown by a recent attempt to generate a model

of a form of trait anxiety linked to generalized anxiety

disorder (GAD). So-called ‘contextual’ fear conditioning

(in contrast with conditioning to a simple stimulus) pro-

duces freezing behaviour that is sensitive to anxiolytic

drugs. This contextual conditioning has been used as a

basis for bi-directional selection of the Carioca high (CHF)

and low (CLF) freezing strains of rat, with differences

appearing after only 3 generations. Importantly, the dif-

ferences generalise to ‘several behavioral tests, including

the elevated plus maze (EPM), the social interaction test

and defensive responses that are induced by electrical

stimulation of the dorsal periaqueductal gray’ [39, p. 2].

Critically for its GAD equivalence, CHF/CLF show

normal cued fear conditioning [40] and normal depression

in the forced swim test [41]. Also Ref. [42], conditioning

itself was not the key aspect of selection: the CHF

showed high and the CLF showed low anxiety-related

responses, relative to unselected control (CTL), in an
www.sciencedirect.com
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ethological test; where CLF but not CHF rats, also

showed a reduced benzodiazepine anxiolytic response

compared to CTL. CHF also react more strongly to

chronic unpredictable mild stress [43].

Interestingly, CHF rats consume more alcohol (with

females even more than males) and less saccharine than

CLF and CTL — results that ‘support the hypothesis that

there is a positive relationship between anxiety and

alcohol intake, and provide further evidence for the

use of CHF rats as a model of GAD’ [44, p. 1]. The

use of bidirectional selection is interesting at the neural

level (see Figure 1) since CHF brain activation by con-

textual cues was high in the locus coeruleus, periventri-

cular nucleus of the hypothalamus (PVN), and lateral

portion of the septal area and low . . . in the medial

portion of the septal area, dentate gyrus, and prelimbic

cortex (PL) compared to CTL animals. [Whereas,] CLF

rats exhibited a decrease . . . in the PVN, PL, and

basolateral nucleus of the amygdala and increase in the

cingulate and perirhinal cortices compared to CTL ani-

mals. [So, CHF and CLF had] opposing influences on the

PVN, the main structure involved in regulating the

hypothalamic–pituitary–adrenal neuroendocrine

responses observed in anxiety disorders [45, p. 1].

These activity patterns could have resulted from differ-

ences in 5-HT2A expression [39] but could have been

bidirectionally distinct. Bidirectional selection for high

and low anxiety-related-behaviour in the elevated +

maze, for example, produces increased periaqueductal

grey and decreased superior colliculus activity, respec-

tively, relative to normal mice; and distinct maladaptive

changes in defence reactions [46].

The choice of a simple, well-understood, task (and con-

trol tests) is important with such learning-based breeding

experiments, if simple understandable traits are to be

studied. The Roman high- (RHA) and low- (RLA) avoid-

ance rats were subjected to bidirectional selection for

speed of acquisition of a 2-way avoidance task. While

anxiolytic drugs produce a superficially paradoxical

improvement in 2-way avoidance learning (due to a

selective effect on passive but not active avoidance),

behaviour in the task will also clearly depend on a range

of other factors (including the capacity for 1-way avoid-

ance). Unsurprisingly, therefore, RHA differ from RLA

on many traits: proactive coping; sensation/novelty seek-

ing; innate preference for natural and drug rewards; and

high impulsivity.

High levels of impulsivity are associated with sev-

eral neuropsychiatric conditions including atten-

tion-deficit hyperactivity disorder, obsessive com-

pulsive disorder, schizophrenia, and drug addiction.

[So,] RHA rats [may] represent a valid genetic

model, with face, construct, and predictive validity,
www.sciencedirect.com 
to investigate the neural underpinnings of behav-

ioral disinhibition, novelty seeking, impulsivity,

vulnerability to drug addiction as well as deficits

in attentional processes, cognitive impairments and

other schizophrenia-relevant traits [47, p.1].

The Roman rat model shows clear and interesting trait

results of breeding for a simple learning score but, unlike

the simpler Carioca rat model, poses the question as to

what is the nature and number of the traits that have been

selected for. They are clearly not specific to 2-way avoid-

ance (and anxiolytic action) as such and extend beyond

defensive behaviour to changes in responses to positive

reinforcers.

Explicit non-human to human translation

When comparing species, ensuring homology is important

[see, e.g. Ref. 48]. In commenting on two papers that

appeared in the same issue of Nature Human Behaviour,

we asked:

How can we test whether humans are like rodents

when responding to threats? The clearest view of

the nature of, and distinctions between, fear and

anxiety in both rats and mice comes from

‘ethoexperimental’ exposure to predators, the

effects of which we can subject to challenge with

anxiolytic and panicolytic drugs and translate to

people.

How do we expose people to a real predator in an

experiment? Doing so, especially while asking them

to remain still in [an fMRI] scanner, sounds tricky.

This problem has been solved using virtual worlds

that contain [virtual] ‘predators’ that deliver real-

world pain [49
�
, p. 1].

Fung, et al. [50, p. 702] used such a paradigm [see also Ref.

51] to show that trait anxiety (as measured by the Spiel-

berger State Trait Anxiety Inventory) was unrelated to

escape under urgency but ‘individuals with higher trait

anxiety escaped earlier during slow threats’ and, consis-

tent with Figure 1, ‘trait anxiety positively correlated with

activity in the vHPC, mPFC, amygdala and insula’.

vHPC (ventral hippocampal) activity has also been shown

to be more related to avoidance in approach-avoidance

conflicts than to threat per se [52], while hippocampal

lesions affect approach to threat and amygdala escape

from it, but not vice versa [53] — as in the non-human

literature.

Also consistent with Figure 1, Korn and Bach [54, p. 733]

used behaviour modelling coupled with fMRI to ‘provide

a decision-theoretic outlook on the role of the human

hippocampus, amygdala and prefrontal cortex in resolving

approach–avoidance conflicts relevant for anxiety and

integral for survival’. Such tasks also show human
Current Opinion in Behavioral Sciences 2022, 43:255–262
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hippocampal and amygdala activity in the theta band that

can be directly compared to rodent results [55]. Con-

versely, the simple behavioural measures of risky foraging

in such tasks can be linked to gender, IQ, self-reported

cognitive complexity, and self-reported daringness [56].

Conclusions
Experimental work on animal traits, even in the well-

studied defensive systems that we have reviewed, has so

far focussed on links between behavioural and morpho-

logical traits [36] or models of psychopathology [e.g. Refs.

24,35,39] as has human translation [e.g. Refs. 32,50].

While informing personality, these studies do not directly

target it as a primary topic. Conversely, the animal liter-

ature on personality structure has followed the main

human literature [10] in using self/other report with

limited connections to mechanisms and psychopathology.

Future experimental animal work should move beyond a

blinkered single-disorder-model approach to not only the

nature of the underlying general population traits

involved but also questions of the relation these psycho-

pathology-linked traits to more general work on animal

personality structure [1,2]. While in human work person-

ality and psychopathology are seen as related hierarchies

[15,57–60] there is as yet no simple or direct translation

between them as systems (nor between them and the

non-hierarchical RDoC approach [61,62]); although there

are points of contact where constructs can be tentatively

treated as the similar, if not identical (Figure 2). Indeed, it

is possible that a single psychopathological dimension will

best be explained as the result of interaction between two

or more normal personality traits rather than being an

extreme of a single such trait [63]. Animal work, particu-

larly cross-breeding or drug-strain interaction tests [42],

would be particularly useful under these circumstances.

Starting with low level syndromes/aspects (e.g. panic,

fear, anxiety, obsession) anchored in a detailed neuropsy-

chology of conserved survival circuits (e.g. Figure 1)

should provide a common anchor for all of these

classifications.

A final crucial step, which we are beginning to take, is to

match detailed animal work on neural systems to neces-

sarily more coarse-grained human translation while ensur-

ing the homology of the tests involved both behaviourally

[51] and pharmacologically [32,66,67��] to generate bio-

markers of human disorder [68��]. In the ideal case, here,

non-human and human experiments would be planned in

parallel or be directly linked one to the other and both

would aim to understand (mechanistically and phyloge-

netically) both the underlying specific traits and the

higher order structure within which those traits are

embedded.
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